Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice.

نویسندگان

  • Robert Larbig
  • Natalia Torres
  • John H B Bridge
  • Joshua I Goldhaber
  • Kenneth D Philipson
چکیده

The hypothesis that Na(+) influx during the action potential (AP) activates reverse Na(+)-Ca(2+) exchange (NCX) and subsequent entry of trigger Ca(2+) is controversial. We tested this hypothesis by monitoring intracellular Ca(2+) before and after selective inactivation of I(Na) prior to a simulated action potential in patch-clamped ventricular myocytes isolated from adult wild-type (WT) and NCX knockout (KO) mice. First, we inactivated I(Na) using a ramp prepulse to 45 mV. In WT cells, inactivation of I(Na) decreased the Ca(2+) transient amplitude by 51.1 +/- 4.6% (P < 0.001, n = 14) and reduced its maximum release flux by 53.0 +/- 4.6% (P < 0.001, n = 14). There was no effect on diastolic Ca(2+). In striking contrast, Ca(2+) transients in NCX KO cardiomyocytes were unaffected by the presence or absence of I(Na) (n = 8). We obtained similar results when measuring trigger Ca(2+) influx in myocytes with depleted sarcoplasmic reticulum. In WT cells, inactivation of I(Na) decreased trigger Ca(2+) influx by 37.8 +/- 6% and maximum rate of flux by 30.6 +/- 7.7% at 2.5 mm external Ca(2+) (P < 0.001 and P < 0.05, n = 9). This effect was again absent in the KO cells (n = 8). Second, exposure to 10 mum tetrodotoxin to block I(Na) also reduced the Ca(2+) transients in WT myocytes but not in NCX KO myocytes. We conclude that I(Na) and reverse NCX modulate Ca(2+) release in murine WT cardiomyocytes by augmenting the pool of Ca(2+) that triggers ryanodine receptors. This is an important mechanism for regulation of Ca(2+) release and contractility in murine heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides.

The widely accepted model to explain the positive inotropic effect of cardiac glycosides invokes altered Na+-Ca2+ exchange activity secondary to Na+ pump inhibition. However, proof of this model is lacking and alternative mechanisms have been proposed. We directly tested the role of the Na+-Ca2+ exchanger in the action of the glycoside ouabain using Na+-Ca2+ exchanger knockout mice. Ablation of...

متن کامل

Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury.

During ischemia and reperfusion, with an increase in intracellular Na+ and a depolarized membrane potential, Ca2+ may enter the myocyte in exchange for intracellular Na+ via reverse-mode Na+-Ca2+ exchange (NCX). To test the role of Ca2+ entry via NCX during ischemia and reperfusion, we studied mice with cardiac-specific ablation of NCX (NCX-KO) and demonstrated that reverse-mode Ca2+ influx is ...

متن کامل

The Effects of SEA0400 on Ca2+ Transient Amplitude and Proarrhythmia Depend on the Na+/Ca2+ Exchanger Expression Level in Murine Models

Background/Objective: The cardiac Na+/Ca2+ exchanger (NCX) has been identified as a promising target to counter arrhythmia in previous studies investigating the benefit of NCX inhibition. However, the consequences of NCX inhibition have not been investigated in the setting of altered NCX expression and function, which is essential, since major cardiac diseases (heart failure/atrial fibrillation...

متن کامل

Cardiac sodium-calcium exchanger is regulated by allosteric calcium and exchanger inhibitory peptide at distinct sites.

The sarcolemmal Na+-Ca2+ exchanger (NCX) is the main Ca2+ extrusion mechanism in cardiac myocytes and is thus essential for the regulation of Ca2+ homeostasis and contractile function. A cytosolic region (f-loop) of the protein mediates regulation of NCX function by intracellular factors including inhibition by exchanger inhibitory peptide (XIP), a 20 amino acid peptide matching the sequence of...

متن کامل

Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation

BACKGROUND Agonist stimulation of airway smooth muscle (ASM) results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 588 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2010